Mostrando las entradas con la etiqueta Relatividad. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Relatividad. Mostrar todas las entradas

domingo, 22 de octubre de 2017

El oro de las estrellas

Por Martín Bonfil Olivera
Dirección General de Divulgación de la Ciencia, UNAM
Publicado en Milenio Diario, 22 de octubre  de 2017

Desde hace algunas semanas, entre la comunidad de astrofísicos y expertos en relatividad y cosas similares había corrido un rumor: “se aproxima un gran anuncio en relación con las ondas gravitacionales”.

Usted recordará que este año el premio Nobel de física se entregó a los creadores del detector LIGO, que el 11 de febrero de 2016 permitió detectar, por primera vez, dichas oscilaciones del espacio tiempo, predichas por la teoría de la relatividad de Einstein. Fueron producidas por el choque de dos hoyos negros que, atraídos por su propia gravedad, fueron girando cada vez más rápido en un remolino que los acercó más y más hasta que, al chocar y fundirse, hicieron temblar el tejido del cosmos como una gelatina.

Desde entonces se habían detectado, gracias a los dos detectores LIGO ubicados en distintas partes de los Estados Unidos, y a su primo menor Virgo, en Italia, otras tres fuentes de ondas gravitacionales, también debidas a la fusión de hoyos negros.

Pero el pasado 16 de octubre, la comunidad astronómica finalmente anunció al mundo, en una conferencia de prensa en Washington, DC, que dos meses antes, el 17 de agosto, habían detectado un quinto evento cósmico que emitió ondas gravitacionales intensas durante nada menos que 100 segundos. Gracias a que se tienen detectores tres puntos, los dos LIGO y Virgo, se logró triangular con cierta precisión la región del espacio de donde provenían las ondulaciones.

Dos segundos después el telescopio espacial Fermi de la NASA detectó, en esa misma región, un fenómeno llamado “emisión de rayos gamma”: un tipo de evento que libera cantidades inmensas de radiación electromagnética, y cuyo origen era incierto hasta ahora. Inmediatamente, astrónomos en todo el mundo dirigieron sus telescopios de distintos tipos al cielo. Doce horas más tarde, detectaron luz visible e infrarroja proveniente del mismo punto, ubicado a 130 millones de años luz, en la constelación de la Hidra, y una semana después rayos X, y luego ondas de radio.

Toda esta información permitió deducir que la causa del evento fue el choque de dos estrellas de neutrones que giraban una alrededor de la otra (algo que ya se había predicho teóricamente con mucha precisión). Al fundirse, emitieron ondas gravitacionales y radiación electromagnética –luz visible, rayos gamma, X e infrarrojos, y ondas de radio–, además de cantidades enormes de elementos químicos pesados recién formados, como oro, plata, platino, uranio y varios más.

Origen cósmico de
los elementos químicos
Desde los años ochenta, el astrónomo y divulgador Carl Sagan nos había enseñado que “estamos hechos de materia estelar”: los átomos que constituyen todo el universo fueron “cocinados” en estrellas, a partir de hidrógeno y helio. A su vez éstos, los elementos más ligeros de la tabla periódica, fueron creados en el big bang. A partir de ellos, las estrellas, gracias a las reacciones termonucleares que las hacen brillar, producen otros elementos más pesados como carbono, oxígeno y muchos otros. Pero los elementos más pesados que éstos sólo se producen cuando las estrellas especialmente grandes, luego de acabar de quemar el combustible que las mantiene en equilibrio, se contraen debido a su propia gravedad, y luego explotan para convertirse en supernovas. En este proceso se forman dichos elementos más pesados, que son expulsados hacia el espacio.

El remanente de estas explosiones es a veces, dependiendo de la masa de la estrella que explota, una estrella de neutrones: una esfera de sólo unos 20 kilómetros de diámetro, formada casi exclusivamente por neutrones, y que tiene una densidad inimaginable: puede pesar el doble que el Sol. Una cucharadita de este material pesaría unas mil millones de toneladas, o unas 900 veces el peso de la Gran Pirámide de Egipto. Fueron dos de estas esferas de materia superdensa las que chocaron en el evento detectado el 17 de agosto.

Además de producir ondas gravitacionales y electromagnéticas, este cataclismo cósmico mostró que la principal fuente de elementos químicos pesados en el universo no son, como se pensaba hasta ahora, las supernovas, sino los choques de estrellas de neutrones, que producen lo que se conoce como kilonovas. En particular, se calcula, por ejemplo, que la kilonova de agosto produjo una cantidad de oro equivalente a unas 10 veces la masa de la Tierra. Además, ayudó a precisar el valor de la llamada constante de Hubble, que indica a qué velocidad se está expandiendo el universo, y prácticamente resolvió el misterio del origen de las emisiones de rayos gamma, entre otros importantísimos avances.

Cuando el año pasado se descubrieron las ondas gravitacionales, se dijo que ahora los astrónomos tenían una nueva “ventana” disponible, además de la radiación electromagnética ­para estudiar el universo. Tan sólo un año después, esta nueva herramienta comienza a dar resultados de gran riqueza, y confirma que el Nobel de física de este año no pudo haber sido más acertado.

¿Te gustó?
Compártelo en Twitter:
Compártelo en Facebook:

Contacto: mbonfil@unam.mx

Para recibir La ciencia por gusto cada semana
por correo electrónico, ¡suscríbete aquí!

jueves, 18 de febrero de 2016

Olas de gravedad

Por Martín Bonfil Olivera
Dirección General de Divulgación de la Ciencia, UNAM
Publicado en Milenio Diario, 18 de febrero de 2016


El jueves pasado, 11 de febrero, la comunidad científica mundial –y, con un poco de retraso, los medios de comunicación– se estremeció por lo que muchos califican de “el descubrimiento científico del siglo” (no sé si lo sea, pero seguro es por lo menos el del año, y probablemente el de la década). El Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO) cumplió con el cometido para el que fue construido: detectar de manera categórica, por primera vez desde que fueron predichas por la teoría general de la relatividad de Einstein, ondas de gravedad.

¿Qué son las ondas gravitacionales, y por qué es importante este descubrimiento? Vamos por partes.

Si el lector estuviera sumergido en una piscina con la cabeza fuera, y alguien arrojara una piedra al agua, podría ver las olas –ondas– que el impacto causaría en la superficie del agua. Si estuviera sumergido y, digamos, un pequeño petardo estallara dentro de la piscina, no vería olas, pero sentiría el golpe tridimensional de las ondas de impacto, que se transmitiría a través de todo el cuerpo de agua.

En ambos casos, las ondas están formadas por agua en movimiento oscilante. Hay otras cosas que se transmiten mediante ondas: el sonido, que también requiere de algún material –gaseoso, líquido o sólido– y la radiación electromagnética, que se transmite en el vacío. Pero las ondas gravitacionales son algo completamente distinto. No son la forma como se transmite la gravedad, sino algo más complejo.

Durante toda su historia, la humanidad pudo observar el universo que nos rodea –estrellas y planetas y galaxias– solamente a través de la luz visible que llega desde ellos hasta nosotros. Primero a simple vista, y luego usando telescopios cada vez más precisos y potentes. En los años 30 del siglo pasado se construyeron los primeros radiotelescopios: telescopios que podían captar otro tipo de radiación electromagnética: las ondas de radio. Más adelante, se construyeron telescopios que captan luz infrarroja, ultravioleta, rayos X y microondas. Cada una de estas “ventanas” que abrimos para estudiar el universo nos ofreció nuevas revelaciones. Pero se trataba siempre de ondas electromagnéticas, aunque de distintas longitudes.

Cuando a principios del siglo XX Albert Einstein propuso su teoría de la relatividad, cambió por completo la manera en que entendemos el espacio, el tiempo y la gravedad. Antes, el espacio y el tiempo se consideraban inmutables, y la gravedad era una fuerza de atracción entre cuerpos. Pero Einstein mostró que la masa de los cuerpos es capaz de deformar lo que él llamó “el espaciotiempo” (pues en su visión el tiempo es una cuarta dimensión equivalente a las tres del espacio; de ahí los extraños fenómenos relativistas en que el espacio y el tiempo se distorsionan). La gravedad es precisamente esa deformación del espaciotiempo causada por la masa.

Entonces, si dos masas muy grandes llegaran, por ejemplo, a chocar, producirían una onda de deformación que se iría expandiendo por todo el espaciotiempo a su alrededor: ondas de gravedad.

El interferómetro de LIGO en
Hanford, estado de Washington
El proyecto estadounidense LIGO se construyó, con un costo de más mil cien millones de dólares durante más de 40 años, justo para detectar estas ondas. Consiste en dos enormes interferómetros: aparatos en que un rayo de luz láser se hace rebotar en espejos a lo largo de dos tubos dispuestos en ángulo recto, como una L. Uno está situado en Washington y otro en Luisiana; cada uno tiene dos brazos de 4 kilómetros de longitud. Si una onda de gravedad pasara por estos lugares, el espacio mismo se deformaría (y no podríamos darnos cuenta). Pero, por ser perpendiculares, dicha deformación sería más notoria en uno de los brazos de los detectores que en el otro. Como las dos ramas del rayo láser se hacen coincidir en el centro, la deformación producida por la onda de gravedad se detectaría porque en lugar de coincidir perfectamente, habría un patrón de interferencia entre los dos rayos de luz. (La interferometría es la misma técnica que se utilizó originalmente, en 1887, para medir con precisión la velocidad de la luz.)

El 14 de septiembre del año pasado, LIGO, cuya sensibilidad le permite detectar cambios en la longitud de sus brazos de una diezmilésima del tamaño de un protón, fue puesto en marcha. Se esperaba que pudiera detectar el choque de pares de estrellas de neutrones que giran una alrededor de otra. Pero halló algo mejor. Casi de inmediato detectó una señal intensa que, al ser analizada, resultó ser producida por el choque de dos enormes agujeros negros, con masas de 36 y 29 veces la del Sol, que giraban alrededor de su centro de gravedad cada vez más rápidamente –250 veces por segundo, al final–, hasta que se fundieron para producir un agujero negro aún más enorme: de 62 masas solares. El proceso duró un quinto de segundo.

¿Y las 3 masas solares faltantes? Se convirtieron en la energía que se propagó en forma de ondas gravitacionales.

El descubrimiento confirma la teoría de Einstein, y revela que existen agujeros negros binarios que giran en pareja. Además, justifica el gasto en el LIGO y asegura que se construirán nuevos y más potentes interferómetros (incluso en el espacio). Pero no sólo eso: constituye una manera totalmente nueva de explorar el universo, ya no a través de ondas electromagnéticas sino gravitacionales. Es, según los expertos, como si hasta ahora la humanidad sólo hubiera tenido ojos, y hoy también gozáramos de oídos.

¿Te gustó?
Compártelo en Twitter:
Compártelo en Facebook:

Contacto: mbonfil@unam.mx

Para recibir La ciencia por gusto cada semana
por correo electrónico, ¡suscríbete aqui!