Dirección General de Divulgación de la Ciencia, UNAM
Publicado en Milenio Diario, 25 de junio de 2017
Publicado en Milenio Diario, 25 de junio de 2017
Difusión de un gene drive en una población |
Aunque se trataba de una figura metafórica, la idea de los genes buscan su propia reproducción como único fin tuvo el efecto de abrir nuevas perspectivas en genética, ecología y biología evolutiva. Y, aunque normalmente los genes cumplen alguna función dentro de los organismos que los albergan, también se halló que existen verdaderos “genes egoístas” cuya única función parece ser reproducirse a sí mismos, aun a costa de dañar a los organismos dentro de los cuales existen. Los virus podrían ser vistos como un ejemplo, aunque no el único, de estas entidades autorreproductoras abusivas.
Pero, ¿qué pasaría si pudiéramos crear genes egoístas artificiales, y usarlos en beneficio de la humanidad?
En los años 70 se desarrollaron los métodos de ingeniería genética que permiten alterar los genes de organismos individuales. A partir de eso se crearon los primeros organismos genéticamente modificados: inicialmente microorganismos para investigación y uso industrial, pero más adelante vegetales como sorgo, maíz, soya, arroz o algodón, que actualmente se cultivan, ya desde hace décadas, en amplios territorios de muchos países, y que poseen propiedades como ser resistentes a plagas o tener un mayor más nutritivos. Al mismo tiempo, se desató la polémica sobre los posibles riesgos que los organismos “transgénicos” pudieran plantear al ambiente.
Uno de los argumentos contra esos temores es que, al menos en organismos sexuales –como plantas y animales– los genes alterados, aunque pudieran “escapar” de la especie modificada y “contaminar” a organismos silvestres, se irían diluyendo en la población por obra de la segregación mendeliana. Es sencillo: cada individuo tiene dos juegos de genes, heredados uno de su padre y otro de su madre. Si hereda un gen alterado, sólo una fracción de sus descendientes, no todos, lo heredarían, pues la probabilidad de heredarlo es de cuando mucho 50% (normalmente menos, pero no nos metamos en complicaciones). Después de varias generaciones de cruzas con individuos silvestres, la fracción de organismos con el gen foráneo en la población iría disminuyendo hasta desaparecer.
Pero en la naturaleza existen ciertos “genes egoístas” que logran heredarse en más del 50% de la descendencia del organismo que los porta. Se los conoce, en inglés, como gene drives (se pronuncia “yin draivs”, que podría traducirse como “impulsores genéticos” o “genes dirigidos”). En 2003 el biólogo evolutivo Austin Burt propuso que, imitándolos, podrían construirse gene drives sintéticos que permitirían hacer ingeniería genética ya no en individuos, sino en poblaciones completas.
Usando las técnicas disponibles, en 2011 Burt y un equipo de colaboradores lograron introducir en el mosquito Anopheles, que transmite la malaria o paludismo, genes que se heredaban a más del 50% de su descendencia. Demostraron así que era posible fabricar un gene drive sintético y que, al introducirlo en una población, el gen foráneo, en vez de irse diluyendo, iba heredándose a más y más individuos hasta “invadir” a la población.
Se trataba sólo de una demostración de principio. Pero en 2012 apareció una nueva tecnología de edición genética mucho más poderosa que las que existían hasta el momento. Llamada CRISPR-Cas –ya mencionada en este espacio–, permite programar, mediante fragmentos cortos de ácido nucleico, enzimas que cortan y pegan ADN de manera ultraprecisa. Usándola, es posible fabricar prácticamente cualquier gene drive que se desee.
Mecanismo de los gene drives |
¿Qué alteraciones pueden realizarse en una población mediante este poderoso método? Por ejemplo, como proponía Burt, hacer que la descendencia del mosquito sea estéril: así, poco a poco se podría ir extinguiendo la población de mosquitos Anopheles. O de otros vectores de enfermedades, como el mosquito Aedes aegypti, que transmite el dengue y las fiebres zika y chikunguña. Se podrían eliminar así de la faz de la Tierra éstas y otras enfermedades, como fiebre amarilla, enfermedad de Lyme, enfermedad del sueño, esquistosomiasis y muchas otras. O bien, siendo menos drásticos, se podrían introducir modificaciones en una población sin extinguirla pero alterándola, por ejemplo para evitar que los mosquitos transmitan las enfermedades. Otros usos posibles para la tecnología de gene drives son eliminar especies invasivas en territorios donde no pertenecen, eliminar la resistencia a pesticidas en malezas, introducir genes útiles en cultivos y otros muchos usos.
Como es fácil imaginar, una tecnología capaz de modificar para siempre una población, y hasta de llevar a la extinción a especies completas, es demasiado potente como para aplicarla sin antes hacer una profunda evaluación de sus posibles consecuencias. Hasta el momento, existe una moratoria global para liberar organismos modificados con gene drives en la naturaleza. Y toda la investigación que utiliza esta tecnología debe realizarse en laboratorios de alta seguridad (niveles 2 y 3 de bioseguridad, para quien sepa de esas cosas).
Hay quien propone una prohibición absoluta y perpetua. Hay, por el contrario, quien opina que sería antiético no usar algo que puede proporcionar tantos beneficios. Hasta el momento, los expertos en bioseguridad de organismos genéticamente modificados coinciden en que, al ser tan nueva la técnica, “no hay aún suficiente información como para garantizar que la liberación de organismos modificados mediante gene drives sea segura”. Pero, al mismo tiempo, también coinciden en que “los beneficios potenciales justifican seguir adelante con la investigación para explorar estos riesgos”, y para poder comprenderlos y evaluarlos mejor.
La ciencia y la tecnología pueden, como toda herramienta –desde unas tijeras hasta un reactor nuclear– ser usadas responsable y constructivamente, o bien convertirse en un arma destructiva. De lo que podemos estar seguros es que seguirá habiendo, inevitablemente, avances tecnológicos con el poder de alterar nuestro entorno. Ante ello, más vale entenderlos a fondo para decidir si los queremos utilizar, y cómo.
¿Te gustó?
Compártelo en Twitter:
Compártelo en Facebook:
Contacto: mbonfil@unam.mx
Para recibir La ciencia por gusto cada semana
por correo electrónico, ¡suscríbete aquí!