Dirección General de Divulgación de la Ciencia, UNAM
Publicado en Milenio Diario, 3 de septiembre de 2017
El Klosneuvirus (fuente: Science Magazine http://ow.ly/cg4j30eY2qF) |
Es esta enorme diversidad y flexibilidad la que hace que sea tan difícil definir la vida. Cada vez que uno trata de delimitar una serie de rasgos distintivos que caracterizan a los seres vivos, surge alguna excepción que da al traste con el intento.
Los virus son un caso especialmente interesante. Tradicionalmente se considera que no son organismos. Se los define como partículas formadas por una cápsula (o “cápside”) de proteínas que protege a una pequeña porción de ácidos nucleicos (el clásico ADN o bien su pariente más antiguo, el ácido ribonucleico, ARN). Pueden estar o no cubiertos por una membrana flexible parecida a la que rodea a las células.
Pero los virus no son células: por el contrario, para multiplicarse necesitan infectar células y apoderarse de su maquinaria genética, para que copie su genoma y fabrique sus proteínas. En ese sentido, tampoco están vivos: sólo están activos cuando se hallan dentro de una célula.
La inmensa mayoría de los virus son más pequeños que cualquier célula y contienen pocos genes: algunos sólo dos, pero normalmente unos cuantos. Como comparación, el genoma de la bacteria intestinal Escherichia coli tiene unos 4,300 genes, y el genoma humano, 20 mil.
Pero en 2003 se identificó un virus tan enorme que era mayor que algunas células, y que tiene un genoma con casi mil genes: mayor que el de muchas bacterias. Como parecía mimetizarse con una verdadera célula (de hecho se le confundió con una cuando fue descubierto), se le llamó “mimivirus”; ya hemos hablado de él en este espacio.
Posteriormente se han descubierto otros virus enormes, tanto en tamaño como en complejidad y número de genes; entre ellos el pandoravirus, que tiene 2,500 genes.
Virus gigantes (fuente: Science Magazine http://ow.ly/cg4j30eY2qF) |
Estos y otros descubrimientos llevaron a proponer que estos grandes virus podrían ser descendientes de una cuarta rama del gran árbol de la vida. Las tres ya conocidas son las células con núcleo (eucariontes, como protozoarios, hongos, plantas y animales), las bacterias, y las arqueas (primas de las bacterias, aunque distintas a nivel molecular y metabólico). Los hipotéticos organismos de la cuarta rama habrían ido perdiendo funciones –y genes– hasta convertirse en los parásitos que son actualmente.
Recientemente, un equipo de virólogos encabezados por Frederik Schulz, del Instituto de Genómica del Departamento de Energía de los Estados Unidos, en California, halló algo nuevo al analizar lodos provenientes de una planta de tratamiento de aguas de la ciudad de Klosterneuburg, en Austria. Sus resultados se publicaron en la revista Science en abril pasado.
Utilizando métodos de metagenómica, que permiten identificar a los organismos presentes en una muestra a partir sólo de su ADN, hallaron lo que parece ser el genoma de un nuevo virus gigante, al que llamaron klosneuvirus. Lo interesante es que este virus tiene 20 distintas enzimas sintetasas de ARN de transferencia, correspondientes a cada uno de los 20 aminoácidos que forman las proteínas. Es decir, un juego completo de dichas enzimas… igual que una célula viva.
Esto no quiere decir que el virus pueda producir sus propias proteínas, pues no tiene ribosomas, las fábricas moleculares que hacen dicho trabajo en las células (hasta ahora no se ha hallado señal de los genes necesarios para fabricar ribosomas en ningún virus conocido). Pero sí parecería, a primera vista, fortalecer la hipótesis de que los virus gigantes descienden de antiguas células, quizá pertenecientes a esa hipotética cuarta rama del árbol de la vida.
Para investigarlo más a fondo, Schulz y sus colegas estudiando, con métodos de análisis genético comparado, la procedencia de dichos genes. Lo que hallaron fue inesperado: cada gen parecía provenir de un linaje evolutivo distinto, principalmente de algas. En otras palabras, no parecían descender de un antepasado común, una célula antigua que fue perdiendo genes hasta convertirse en el klosneuvirus actual. Por el contrario, éste parece haber surgido a partir de un virus pequeño que fue adquiriendo enzimas una por una, por aquí y por allá, a partir de distintos organismos. Un fuerte golpe para la hipótesis del cuarto dominio de la vida. (Aunque otros virólogos desconfían, y opinan que la posibilidad de una cuarta rama del árbol de la vida no puede descartarse hasta que no se aísle al klosneuvirus mismo, en vez de sólo confiar en deducciones sobre su existencia a partir del ADN hallado en muestras.)
¿Y para qué querría un virus, por gigante que sea, tener sus propios genes para fabricar enzimas relacionadas con la producción de proteínas? Quizá porque algunas células, al detectar que han sido infectadas por virus, dejan de fabricar dichas enzimas, como mecanismo de protección. Los genes transportados por el virus podrían ser una forma de pasar por encima de esta defensa.
Queda claro que los virus son un territorio todavía poco explorado, que probablemente seguirá dándonos sorpresas que quizá sigan haciendo más borrosa la línea entre virus y células.
Y también que los organismos y las especies vivas son en realidad sistemas modulares formados por combinaciones enormemente flexibles de distintos genes, casi como bloques de lego moleculares.
Sin duda, la flexibilidad es una de las características fundamentales lo vivo.
¿Te gustó?
Compártelo en Twitter:
Compártelo en Facebook:
Contacto: mbonfil@unam.mx
Para recibir La ciencia por gusto cada semana
por correo electrónico, ¡suscríbete aquí!
1 comentario:
Hola mi comentario no es sobre el artículo es sobre una reflexión que va orientada a divulgadores españoles, y me pareció interesante compartirla contigo, https://youtu.be/hG5tku6Jtt0 va sobre la divulgación científica. Ojalá y lo puedas ver.
Publicar un comentario