Dirección General de Divulgación de la Ciencia, UNAM
Publicado en Milenio Diario, 5 de noviembre de 2017
La fotosíntesis |
Y uno de los enigmas más antiguos en biología, aparte de la aparición misma de la vida, es cómo pudo surgir el proceso que permite a los organismos tomar la energía del sol para, transformándola en energía química, fabricar los compuestos orgánicos que dan sustento a prácticamente todos los ecosistemas terrestres.
Es bien sabido que el proceso bioquímico que hace esto posible es la fotosíntesis: las plantas toman dióxido de carbono y agua de la atmósfera y, con ayuda de los fotones que captura el pigmento llamado clorofila, que se halla en los cloroplastos de sus hojas, los transforman en azúcares o carbohidratos (que luego el metabolismo celular puede transformar en muchos otros compuestos necesarios para la vida). Como producto secundario, el proceso produce oxígeno que se libera a la atmósfera. Básicamente, la fotosíntesis transforma aire en tejido orgánico y oxígeno, con ayuda de la energía solar.
Sistemas de reacción fotosintéticos de una planta |
¿Cómo surgió, evolutivamente, un proceso tan complejo y eficiente como la fotosíntesis? Durante décadas, los bioquímicos y biólogos moleculares han estado intentando descubrirlo a través de los estudios de evolución molecular, que se basa en comparar la estructuras de proteínas (o las secuencias de información contenida en los ácidos nucleicos, que determinan cómo se fabrican las proteínas) de distintos organismos, para tratar de hallar las relaciones evolutivas entre éstos y poder reconstruir así su historia.
El fotosistema de Heliobacterium modesticaldum |
Pues bien: en julio pasado, un grupo de investigadores de la Universidad Estatal de Arizona, en Estados Unidos, publicó en la prestigiosa revista Science el análisis detallado de la estructura molecular de centro fotosintético de reacción de Heliobacterium modesticaldum, la bacteria fotosintética más simple que se conoce hasta ahora, descubierta en los géiseres de Islandia en los años noventa. Lo lograron utilizando la técnica de cristalografía de rayos X, que les permitió determinar la posición de cada átomo en la proteína con una precisión de 2.2 diezmillonésimas de milímetro.
Lo que hallaron fue un sistema fotosintético extremadamente simple, formado por dos subunidades idénticas. Esto es muy diferente a lo que existe en especies más modernas, que tienen subunidades distintas (son “asimétricos). Además, la heliobacteria no puede usar dióxido de carbono como materia prima para la fotosíntesis, y no sólo no produce oxígeno (muchos otros tipos de fotosíntesis tampoco lo hacen), sino que el oxígeno es mortal para ella (lo que dificultó mucho cultivarla para poder realizar los estudios).
En pocas palabras, el centro de reacción de esta bacteria es un fósil molecular que es lo más parecido que tenemos a lo que tuvo el primer organismo fotosintético que surgió en el planeta, hace unos tres mil millones de años.
Pero los detectives moleculares no están satisfechos: seguirán investigando hasta descubrir más pistas que permitan reconstruir el complicado árbol genealógico de la fotosíntesis, y resolver así el misterio que los inquieta.
¿Te gustó?
Compártelo en Twitter:
Compártelo en Facebook:
Contacto: mbonfil@unam.mx
Para recibir La ciencia por gusto cada semana
por correo electrónico, ¡suscríbete aquí!
No hay comentarios.:
Publicar un comentario